Directions: Read each question carefully. Give exact answers unless the question requests otherwise. Include correct units when appropriate.

1. (1.8) Use the order-of-operations to simplify the following expressions:
a. $|-4|+20 \div(7-2)(3-1)$
b. $-1^{2}-15 \div(2-7)$
c. $(-3)^{2}-(-4+7) \div\left(2^{2}-3\right)$
d. $\frac{4-|10-12|}{2^{3}-(2-8)}$
2. (2.3) Solve the following equations:
a. $5(x-4)+5 x=10(2-x)$
b. $5(x-3)-6 x=10(3-x)$
c. $\frac{1}{2} x+\frac{1}{4}=\frac{3}{4} x-\frac{1}{6}$
d. $\frac{1}{3} x-\frac{1}{5}=\frac{1}{5} x+\frac{1}{3}$
3. (2.5) Translate the following problems into an algebraic equation and solve:
a. Twice the difference of a number and three is equal to eight.
b. Eight less than the product of three and a number is twenty-two.
c. Four times a number added to eight is equivalent to the opposite of four.
4. (2.7) Solve the following inequalities and graph on a number line:
a. $2(x-5)+5 \leq-21$

b. $-3(4 x-6)>-10 x$

5. (3.1, 3.2) Graph the following linear equations. Label at least two points on the graph.
a. $4 x-2 y=8$
b. $2 x+4 y=8$

- 10

6. (3.3) Find the slope of the line through the given points, then state whether the line is increasing, decreasing, vertical, or horizontal. Justify your answer.
a. $(0,-1),(3,2)$
b. $(-2,7),(-1,2)$
c. $(9,-3),(5,-3)$
7. (3.4) Given the linear equation $3 x+5 y=8$, answer the following.
a. Rewrite the equation in slope - intercept form.
b. State the slope.
c. State the y-intercept in point form.
8. (3.4) Given the linear equation $2 x-4 y=12$, answer the following.
a. Rewrite the equation in slope - intercept form.
b. State the slope.
c. State the y-intercept in point form.
9. (3.4) Write the equation of the line in slope-intercept form given the slope and the y-intercept:
a. $m=-2 ;(0,3)$
b. $m=3 ;(0,-2)$
10. (3.5) Write the equation of the line slope-intercept form given the slope and a point that lies on the line:
a. $m=4 ;(5,3)$
b. $m=-6 ;(-1,2)$
11. (4.2, 4.3) Solve the following systems of equations using substitution or elimination.
a. $\left\{\begin{array}{l}7 x-4 y=4 \\ 5 x+y=26\end{array}\right.$
b. $\left\{\begin{array}{c}3 x-5 y=-17 \\ y=-15-4 x\end{array}\right.$
12. (4.4) Translate the following word problems into a system of equations and solve algebraically. Include correct units in your answer.
a. A restaurant manager buys 50 lb of sausage and 80 lb of hamburger for a total cost of $\$ 300$. A second purchase, at the same price, includes 100 lb of sausage and 120 lb of hamburger for a cost of $\$ 480$. Find the cost of the sausage and the hamburger.
b. If David has 39 bills in his wallet worth $\$ 330$, all fives and tens, how many of each bill does he have?
13. (5.1) Simplify:
a. $\left(9 n^{3}+5 n m^{2}+n m-11\right)-\left(-2 n^{3}-n m+15\right)$
b. $\left(-9 u^{3}-5 u v^{2}+v u-11\right)+\left(u^{3}-13 v u+15\right)$
14. (5.2) Multiply and Simplify:
a. $(11 y-9)(15 y+3)$
b. $(6 m-2)^{2}$
c. $(3 x-7 y)(3 x+7 y)$
d. $\quad(5 x+4)^{2}$
15. (5.1, 5.5, 5.7) Simplify:
a. $\left(-\frac{3}{7} x y^{2} z^{4}\right)^{3}$
b. $\quad 2\left(-\frac{6}{11} a^{3} b c^{4}\right)^{2}$
c. $\quad \frac{4 x^{7} y z^{3}}{-6 x^{2} z^{5}}$
d. $\quad \frac{-10 x^{5} y z^{2}}{25 x^{2} z^{8}}$
16. $(1.1,5.4)$ The polynomial $S=2 L W+2 L H+2 W H$ describes the surface area of a box. Find the surface area of a box with a length of 8 inches, width of 6.5 inches and height of 4 inches, by evaluating the polynomial. Include correct units.
17. (1.8, 5.4) The height h (in feet) of a baseball after t seconds can be modeled by the equation $h=-16 t^{2}+100 t+4$. Find the height of the baseball in four seconds. Include correct units.
18. (6.1-6.5) Factor Completely:
a. $2 x^{2}+3 x+4 x y+6 y$
b. $5 a b^{2}-20 a b-105 a$
c. $4 x^{2}-49 y^{2}$
d. $2 x^{3}-14 x^{2}+24 x$
19. (6.6) Use factoring to solve the following equations:
a. $m^{2}-m=6$
b. $2 x^{2}-9 x+4=0$
c. $5 x^{2}-14 x-3=0$
20. (6.6) Translate the following word problems into an equation and solve algebraically. Include correct units in your answer.
a. The length of a building is twice its width. If the floor area is 288 square feet, what are the length and width?
b. The length of a rectangular area is 7 meters more than its width. If the area is 78 square meters, find the length and width of the rectangle.
21. (7.1) Factor and simplify each expression:
a. $\frac{x^{2}-5 x}{x^{2}-7 x+10}$
b. $\frac{x^{2}-9}{x^{2}+5 x+6}$
22. (7.2) Perform the indicated operations and simplify each expression:
a. $\frac{y^{2}-6 y+5}{y^{2}-1} \cdot \frac{y-1}{y^{2}-10 y+25}$
b. $\frac{x^{2}-2 x-24}{x^{2}-16} \div \frac{x^{2}-x-30}{x^{2}+10 x+25}$
23. (7.3) Perform the indicated operations and simplify each expression:
a. $\frac{x^{2}+2}{x+1}+\frac{4-x^{2}}{x+1}$
b. $\frac{y^{2}}{y^{2}+3 y}-\frac{9}{y^{2}+3 y}$
24. (7.6) Solve.
a. $\frac{3}{x}=\frac{5}{x-8}$
b. $\frac{2}{3(x-2)}=\frac{-1}{-2(3-x)}$
25. (8.2) Simplify. Assume all variables are non-negative:
a. $\sqrt{5 x^{3}} \cdot \sqrt{20 x}$
b. $\quad \sqrt{2 x^{4}} \cdot \sqrt{32 x^{8}}$
c. $\quad \frac{\sqrt{48 a^{7}}}{\sqrt{3 a}}$
d. $\frac{\sqrt{72 x^{3}}}{\sqrt{2 x}}$
26. (8.5) Solve the radical equations:
a. $\quad \sqrt{2 x-1}=6$
b. $\sqrt{x-3}+5=11$
c. $\sqrt{x+1}-4=3$
d. $\sqrt{x+3}+2=1$
27. (9.3) Use the quadratic formula to solve:
a. $6 x^{2}-3 x-4=0$
b. $4 x^{2}-4 x-1=0$
28. (9.5) For the quadratic equation below, find the vertex, y-intercept, and x-intercept(s).Then graph the equation, labeling all points found.
a. $y=x^{2}-4 x+3$
b. $y=x^{2}+2 x-8$

- 10

- 10

Solutions

1.

a. 12
b. 2
c. 6
d. $\frac{1}{7}$
2.
a. $x=2$
b. $x=5$
c. $x=\frac{5}{3}$
d. $x=4$
3.
a. $2(n-3)=8 ; n=7$
b. $3 n-8=22 ; n=10$
c. $4 n+8=-4 ; n=-3$
4. a. $x \leq-8$, graph on number line - closed circle at -8 , arrow pointing to the left.
b. $x<9$, graph on number line - open circle at 9 , arrow pointing to the left.
5. a. graph is an increasing line passing through $(0,-4)$ and $(2,0)$
b. graph is a decreasing line passing through $(0,2)$ and $(4,0)$
6. a. $m=1$; increasing line due to positive slope
b. $m=-5$; decreasing line due to negative slope
c. $m=0$; horizontal line due to zero slope
7.
a. $y=\frac{-3}{5} x+\frac{8}{5}$
b. $m=-\frac{3}{5}$
c. $\left(0, \frac{8}{5}\right)$
8.
a. $y=\frac{1}{2} x-3$
b. $\frac{1}{2}$
c. $(0,-3)$
9.
a. $y=-2 x+3$
b. $y=3 x-2$
10.
a. $y=4 x-17$
b. $y=-6 x-4$
11.
a. $(4,6)$
b. $(-4,1)$
12. a. Equations: $\left\{\begin{array}{c}50 x+80 y=300 \\ 100 x+120 y=480\end{array}\right.$

Solution: The cost of hamburger is $\$ 3.00$ per pound. The cost of sausage is $\$ 1.20$ per pound.
b. Equations: $\left\{\begin{array}{c}x+y=39 \\ 5 x+10 y=330\end{array}\right.$

Solution: David has 12 five dollar bills and 27 ten dollar bills.
13.
a. $11 n^{3}+5 \mathrm{~nm}^{2}+2 n m-26$
b. $-8 u^{3}-5 u v^{2}-12 u v+4$
14.
a. $165 y^{2}-102 y-27$
b. $36 m^{2}-24 m+4$
c. $9 x^{2}-49 y^{2}$
d. $25 x^{2}+40 x+16$
15.
a. $\frac{-27}{343} x^{3} y^{6} z^{12}$
b. $\frac{72}{121} a^{6} b^{2} c^{8}$
c. $\frac{-2 x^{5} y}{3 z^{2}}$
d. $\frac{-2 x^{3} y}{5 z^{6}}$
16. $S=220$ squareinches
17. $h=148$ feet
18.
a. $(2 x+3)(x+2 y)$
b. $5 a(b-7)(b+3)$
c. $(2 x-7 y)(2 x+7 y)$
d. $2 x(x-3)(x-4)$
19.
a. $m=-2, \quad m=3$
b. $x=\frac{1}{2}, \quad x=4$
c. $x=3, \quad x=\frac{-1}{5}$
20.
a. Equation: $2 w(w)=288$
Dimensions: width: 12 feet, length: 24 feet
b. Equation: $w(w+7)=78$

Dimensions: width: 6 meters, length: 13 meters
21.
a. $\frac{x}{x-2}$
b. $\frac{x-3}{x+2}$
22.
a. $\frac{y-1}{(y+1)(y-5)}$
b. $\frac{x+5}{x-4}$
23.
a. $\frac{6}{x+1}$
b. $\frac{y-3}{y}$
24.
a. $x=-12$
b. $x=\frac{18}{7}$
25.
a. $10 x^{2}$
b. $8 x^{6}$
c. $4 a^{3}$
d. $6 x$
26.
a. $x=\frac{37}{2}$
a. $x=\frac{3 \pm \sqrt{105}}{12}$
b. $x=39$
b. $x=\frac{1 \pm \sqrt{2}}{2}$
c. $x=48$
d. no solution $\{x=-2$ is extraneous $\}$
27.
28.
a. vertex: $(2,-1)$
y-intercept: $(0,3)$
x-intercepts: $(1,0),(3,0)$

Graph: parabolic shape opening up, containing points above.
b. vertex: $(-1,-9) \quad y$-intercept: $(0,-8) \quad x$-intercepts: $(-4,0),(2,0)$

Graph: parabolic shape opening up, containing points above.

