Directions:

- Unless the question asks for an estimate, give an exact answer (real or complex) in completely reduced form.
- When appropriate, answers should include correct units.
- When specified, you must show work to receive credit for your answers.
- A scientific calculator may be used on the final exam.

Formulas:
$x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}, A=P e^{r t}, A=P\left(1+\frac{r}{n}\right)^{n t}$

1) Find the difference quotient of $f, \frac{f(x+h)-f(x)}{h}$ where $h \neq 0$, and simplify. [1.4]
a) $f(x)=7-12 x$
b) $f(x)=x^{2}+1$
c) $f(x)=x^{2}-2 x$
d) $f(x)=2 x^{2}+3 x-6$
2) Let $g(x)=5(x-23)^{2}-20$. [3.1, 3.2, 3.5, 4.4]
a) Give the coordinates of the vertex.
b) Explain how $g(x)$ is transformed from the graph of $y=x^{2}$.
c) What are the zeros of $g(x)$?
3) Let $g(x)=-\frac{1}{2}(x+5)^{2}+8$. $[3.1,3.2,3.5,4.4]$
a) Give the coordinates of the vertex.
b) Explain how $g(x)$ is transformed from the graph of $y=x^{2}$.
c) What are the zeros of $g(x)$?
4) Write the new function $f(x)$ that satisfies the following conditions: $y=|x|$ is reflected with respect to the x -axis, compressed by a factor of $\frac{1}{3}$, shifted to the left three units, and up five units. [3.5]
5) Write the new function $f(x)$ that satisfies the following conditions: $y=x^{5}$ is stretched by a factor of 3 , shifted to the right three units, and down five units. [3.5]
6) Solve using the most appropriate algebraic method. Show work. [3.2, 3.3]
a) $4 x^{2}+2 x+1=0$
b) $-2 x^{2}+4 x-8=0$
c) $7 x^{2}=-28$
d) $-24=x^{2}-11 x$
e) $25=x^{2}-8 x$
7) The cost function for a product is given by $C(n)=n^{2}+12 n+2100$, where n is the number of units produced and sold and $C(n)$ is the cost in dollars. [3.2,5.2]
a) What is the domain of this function in context of the application?
b) Is the function one-to-one for the domain in part (a)? Explain.
c) Find the inverse of this function for the domain in part (a). Show work. (Hint: Use completing the square).
d) Use the inverse function in part (c) to find how many units are produced and sold if the cost is $\$ 3,220$. Show work.
8) The cost function for a product is given by $C(n)=n^{2}+6 n+640$, where n is the number of units produced and sold and $C(n)$ is the cost in dollars. [3.2,5.2]
a) What is the domain of this function in context of the application?
b) Is the function one-to-one for the domain in part (a)? Explain.
c) Find the inverse of this function for the domain in part (a). Show work. (Hint: Use completing the square).
d) Use the inverse function in part (c) to find how many units are produced and sold if the cost is $\$ 2,312$. Show work.
9) Graph by hand. [2.4, 4.2]:
a) $f(x)\left\{\begin{array}{lr}x^{2}-1, & x<-2 \\ 3 x+2, & -2 \leq x<2 \\ \sqrt{x+2}, & x \geq 2\end{array}\right.$
b) $f(x)=\left\{\begin{array}{c}x-2, x \leq 1 \\ \sqrt{3 x+1},\end{array}\right.$
c) $f(x)= \begin{cases}x^{2}-1, & x<1 \\ 1-2 x, & x \geq 1\end{cases}$
10) Let $f(x)=3 x-4$ and $g(x)=\frac{x+4}{3}$. [5.1, 5.2]
a) Find $f(g(x))$.
b) Find $g(f(x))$.
c) Are $f(x)$ and $g(x)$ inverse functions? Explain.
11) Let $f(x)=-8 x$ and $g(x)=\frac{1}{8} x$. [5.1,5.2]
a) Find $f(g(x))$.
b) Find $g(f(x))$.
c) Are $f(x)$ and $g(x)$ inverse functions? Explain.
12) Let $f(x)=2 x+6$ and $g(x)=\frac{x-6}{2}$.
a) Find $f(g(x))$.
b) Find $g(f(x))$.
c) Are $f(x)$ and $g(x)$ inverse functions? Explain.
13) Find the inverse of each function. [5.2]
a) $w(x)=2 x^{3}-5$
b) $f(x)=\sqrt[5]{x+7}$
14) Solve each of the following equations algebraically. [2.5, 4.8]
a) $\sqrt{7 x-28}=\sqrt{x^{2}-4 x}$
b) $|x-18|=x^{2}-18 x$
c) $\left|x^{2}+2 x-4\right|=4$
15) For each function listed below, identify the type of function and then give the domain and range using interval notation. [1.3, 2.5, 5.4]
a) $g(x)=3 x^{2}-20$
b) $h(x)=3 \ln (x)$
c) $k(x)=|2 x+3|-8$
d) $j(x)=3\left(4^{x}\right)$
16) At the end of an advertising campaign, the weekly sales declined. The weekly sales, y (in dollars), are modeled by the equation $y=12,000\left(2^{-0.08 x}\right)$, where x is the number of weeks after the end of the campaign. [5.3]
a) Determine the sales at the end of the campaign.
b) Determine the sales 6 weeks after the end of the campaign.
c) Does the model indicate that sales eventually reach $\$ 0$? Explain.
17) At the end of an advertising campaign, the weekly sales declined. The weekly sales, y (in dollars), are modeled by the equation $y=9,000\left(3^{-0.06 x}\right)$, where x is the number of weeks after the end of the campaign. [5.3]
a) Determine the sales at the end of the campaign.
b) Determine the sales 9 weeks after the end of the campaign.
c) Does the model indicate that sales eventually reach $\$ 0$? Explain.
18) Solve each equation algebraically. Show work. When necessary, round answers to four decimal places. [5.6]
a) $\log _{4}(x)=-2$
b) $4+\log (x)=10$
c) $e^{(-2 x+3)}=2$
d) $300=1200\left(2^{-0.1 x}\right)$
e) $2^{5 x-9}=35$
f) $\ln (-2 x+3)=10$
g) $2 \ln (x)+7=\ln (4 x)+10$
19) Rewrite as a single logarithm. [5.5]
a) $2 \log (x)+5 \log (y)-8 \log (z)$
b) $3 \log _{2}(m)-2 \log _{2}(n)+\log _{2}(q)$
c) $4 \ln (x)-7 \ln (y)+3 \ln (z)-\ln (x)$
20) Rewrite as the sum, difference, or product of logarithms and simplify if possible. [5.5]
a) $\ln \left(\frac{y^{2} e^{3 x}}{z^{3}}\right)$
b) $\log \left(\frac{a^{3} c^{5}}{b^{7}}\right)$
21) Suppose $\$ 9,000$ is invested is invested for t years at 5.5% interest compounded monthly. [5.3]
a) Write an equation that gives the future value, S .
b) Using the model in (a), find the future value of the investment in 4 years.
c) Using the model in (a), find the number of years it will take the investment to double.
22) Suppose $\$ 6,000$ is invested is invested for t years at 7.2% interest compounded quarterly. [5.3]
a) Write an equation that gives the future value, S .
b) Using the model in (a), find the future value of the investment in 5 years.
c) Using the model in (a), find the number of years it will take the investment to triple.
23) Let $f(x)=3 x^{3}+18 x^{2}-12 x-72$. Use this function to answer each question. [4.1, 4.2, 4.4]
a) State the degree and leading coefficient of $f(x)$.
b) Find all x such that $f(x)=0$. Solve algebraically. Show work
c) Describe the end behavior of the graph of $f(x)$.
d) How many turning points does the graph of $f(x)$ have?
24) Let $f(x)=-x^{3}+4 x^{2}+9 x-36$. Use this function to answer each question. [4.1, 4.2, 4.4]
a) State the degree and leading coefficient of $f(x)$.
b) Find all x such that $f(x)=0$. Solve algebraically. Show work
c) Describe the end behavior of the graph of $f(x)$.
d) How many turning points does the graph of $f(x)$ have?
25) Solve algebraically. Show work. [4.4]
a) $0=4 x^{3}-4 x$
b) $x^{3}-15 x^{2}+56 x=0$
c) $0=2 x^{4}-3 x^{3}-20 x^{2}$
d) $x^{4}-3 x^{3}+2 x^{2}=0$
26) Find the domain, vertical and horizontal asymptotes for each of the following. [4.6]
a) $f(x)=\frac{1}{(x-1)^{2}}+1$
b) $g(x)=\frac{1-5 x}{2 x+1}$
c) $f(x)=\frac{x+5}{x^{2}+7 x+10}$
27) Use the graph of the polynomial function f to complete the following. Let a be the leading coefficient of the polynomial $f(x)$. [4.2]
a) Determine the number of turning points.
b) Estimate the x-intercepts.
c) State whether $a>0$ or $a<0$.
d) Determine the minimum degree of f.

28) Use the graph of the polynomial function f to complete the following. Let a be the leading coefficient of the polynomial $f(x)$. [4.2]
a) Determine the number of turning points.
b) Estimate the x -intercepts.
c) State whether $a>0$ or $a<0$.
d) Determine the minimum degree of f.

Solutions:

1) a) -12
b) $2 x+h$
c) $2 x+h-2$
2) a) $(23,-20)$
b) Stretched by a factor of 5 , shift right 23 units, and shift down 20 units.
c) $x=21, x=25$
3) a) $(-5,8)$
b) Reflection with respect to the x -axis, compressed by a factor of $\frac{1}{2}$, left 5 units, and shift up 8 units.
c) $x=-9, x=-1$
4) $f(x)=-\frac{1}{3}|x+3|+5$
5) $f(x)=3(x-3)^{5}-5$
6) a) $x=\frac{-1 \pm i \sqrt{3}}{4}$
b) $x=1 \pm i \sqrt{3}$
c) $x= \pm 2 i$
d) $x=8,3$
e) $x=4 \pm \sqrt{41}$
7) a) $n \geq 0$ or $[0, \infty)$
b) Yes. Possible answers for explanation: the domain restrictions allows the function to pass the horizontal line test.
c) $n(C)=-6+\sqrt{C-2064}$
d) 28 units
8) a) $n \geq 0$ or $[0, \infty)$
b) Yes. Possible answers for explanation: the domain restrictions allows the function to pass the horizontal line test.
c) $n(C)=-3+\sqrt{C-631}$
d) 38 units
9) a) For $x<-2$: decreasing concave up with an open circle at ($-2,3$); For $-2 \leq x<2$: line segment with closed circle at $(-2,-4)$ and open circle at $(2,8)$; For $x \geq 2$: Increasing, concave down with a closed circle at $(2,2)$
b) For $x \leq 1$: increasing line with closed circle at (1,-1); For $x>1$: increasing, concave down with open circle open circle at $(1,2)$
c) For $x<1$: Increasing, concave up with open circle at (1, 0); For $x \geq 1$: decreasing line with closed circle at $(1,-1)$
10) a) $f(g(x))=x$
b) $g(f(x))=x$
c) Yes; give explanation
11) a) $f(g(x))=-x$
b) $g(f(x))=-x$
c) No; give explanation
12) a) $f(g(x))=x$
b) $g(f(x))=x$
c) Yes; give explanation
13) a) $w^{-1}(x)=\sqrt[3]{\frac{x+5}{2}}$
b)) $f^{-1}(x)=x^{5}-7$
14) a) $x=4$ and $x=7$
b) $x=-1$ and $x=18$
c) $x=-4,2,-2,0$
15) a) $g(x)$: quadratic, domain : $(-\infty, \infty)$, range: $[-20, \infty)$
b) $h(x)$: logarithmic, domain : $(0, \infty)$, range: $(-\infty, \infty)$
c) $k(x)$: absolute value, domain : $(-\infty, \infty)$, range: $[-8, \infty)$
d) $g(x)$: exponential, domain : $(-\infty, \infty)$, range: $(0, \infty)$
16) a) 12,000 dollars
b) ≈ 8604 dollars
c) No; the model has a horizontal asymptote at $y=0$
17) a) 9,000 dollars
b) ≈ 4973 dollars
c) No; the model has a horizontal asymptote at $y=0$
18) a) $x=\frac{1}{16}$
b) $x=1,000,000$
c) $x \approx 1.1534$
d) $x=20$
e) $x=3$
f) $x \approx-11011.7329$
g) $x \approx 80.3421$
19) a) $\log \left(\frac{x^{2} y^{5}}{z^{8}}\right)$
b) $\log _{2}\left(\frac{m^{3} q}{n^{2}}\right)$
20) a) $2 \ln (y)+3 x-3 \ln (z)$
b) $3 \log (a)-7 \log (b)+5 \log (c)$
21) a) $S=9000\left(1+\frac{0.055}{12}\right)^{12 t}$
b) $\approx 11,209.06$ dollars
c) $t \approx 12.6$ years
22) a) $S=6000\left(1+\frac{0.072}{4}\right)^{4 t}$
b) $\approx 8,572.49$ dollars
c) $t \approx 15.4$ years
23) a) degree $n=3$; leading coefficient $a=3$
b) $x=-6,-2,2$
c) $f(x) \rightarrow-\infty$ as $x \rightarrow-\infty, f(x) \rightarrow \infty$ as $x \rightarrow \infty$
d) 2 turning points
24) a) degree $n=3$; leading coefficient $a=1$
b) $x=4,-3,3$
c) $f(x) \rightarrow \infty$ as $x \rightarrow-\infty, f(x) \rightarrow-\infty$ as $x \rightarrow \infty$.
d) 2 turning points
25) a) $x=-1,0,1$
b) $x=0,7,8$
c) $x=0, \frac{-5}{2}, 4$
d) $x=0,1,2$
26) a) Domain: $(-\infty, 1) \cup(1, \infty)$; V.A.: $x=1$; H.A.: $y=1$
b) Domain: $\left(-\infty, \frac{-1}{2}\right) \cup\left(\frac{-1}{2}, \infty\right)$; V.A.: $x=\frac{-1}{2}$; H.A.: $y=\frac{-5}{2}$
c) Domain: $(-\infty,-5) \cup(-5,-2) \cup(-2, \infty)$; V.A.: $x=-2$, (Hole at $x=-5$); H.A.: $y=0$
27) a) 3 ; b) $(-7,0),(-2,0),(2,0)$; c) $a<0$; d) The minimum degree of f is 4 .
28) a) 2; b) ($-3,0$); c) $a>0$; d) The minimum degree of f is 3 .
